A Note on the Covariance Structure of a Continuous-time Arma Process

نویسندگان

  • Henghsiu Tsai
  • K. S. Chan
  • HENGHSIU TSAI
چکیده

We have derived some matrix equations for speedy computation of the conditional covariance kernel of a discrete-time process obtained from irregularly sampling an underlying continuous-time ARMA process. These results are applicable to both stationary and non-stationary ARMA processes. We have also demonstrated that these matrix results can be useful in shedding new insights on the covariance structure of a continuous-time ARMA process.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Almost Sure Convergence Rates for the Estimation of a Covariance Operator for Negatively Associated Samples

Let {Xn, n >= 1} be a strictly stationary sequence of negatively associated random variables, with common continuous and bounded distribution function F. In this paper, we consider the estimation of the two-dimensional distribution function of (X1,Xk+1) based on histogram type estimators as well as the estimation of the covariance function of the limit empirical process induced by the se...

متن کامل

Functional Clustering of Periodic Transcriptional Profiles through ARMA(p,q)

BACKGROUND Gene clustering of periodic transcriptional profiles provides an opportunity to shed light on a variety of biological processes, but this technique relies critically upon the robust modeling of longitudinal covariance structure over time. METHODOLOGY We propose a statistical method for functional clustering of periodic gene expression by modeling the covariance matrix of serial mea...

متن کامل

The Inverse of Covariance Matrices for the Arma (p, Q) Class of Processes

Abstract – Analysis of time series data can involve the inversion of large covariance matrices. For the class of ARMA (p, q) processes there are no exact explicit expressions for these inverses, except for the MA (1) process. In practice, the sample covariance matrix can be very large and inversion can be computationally time consuming and so approximate explicit expressions for the inverse are...

متن کامل

Inference from the Incomplete Longitudinal Design under an Arma Covariance Structure

JAMES ROCHON. Inference from the Incomplete Longitudinal Design under an ARMA Cdvariance Structure (Under the direction of RONALD W. HELMS). A stochastic model is presented for the analysis of the longitudinal design, appropriate when some of the response variables are missing. The general linear model is used to relate these dependent variables to other variables which are thought to account f...

متن کامل

Modeling continuous-time processes via input-to-state filters

A direct algorithm to estimate continuous-time ARMA (CARMA) models is proposed in this paper. In this approach, we first pass the observed data through an input-to-state filter and compute the state covariance matrix. The properties of the state covariance matrix are then exploited to estimate the half-spectrum of the observed data at a set of user-defined points on the right-half plane. Finall...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2003